小雪yin荡公交嗯啊校花,搡老女人的全过程,年轻的公和我做爰,亚洲日韩精品一区二区三区,午夜无码人妻aⅴ大片大象传媒

?

行業報告 金融 能源

行業資訊 預警 機會

產業分析 趨勢 時評

大數據 管理 營銷

創  業 項目 故事

人  物 領袖 訪談

宏觀 經濟 策略

數據 行情 匯率

政策 時政 聚焦

金融 信托 理財

地產 市場 環境

商業 觀察 要聞

區域 招商 園區

企業 百科 機會

預警 國際 國內

您現在的位置: 主頁 > 數據 > 大數據 >
如何建立數據分析的思維框架

   曾經有人問過我,什么是數據分析思維?如果分析思維是一種結構化的體現,那么數據分析思維在它的基礎上再加一個準則:

  不是我覺得,而是數據證明

   這是一道分水嶺,“我覺得”是一種直覺化經驗化的思維,工作不可能處處依賴自己的直覺,公司發展更不可能依賴于此。數據證明則是數據分析的最直接體現,它依托于數據導向型的思維,而不是技巧,前者是指導,后者只是應用。

  作為個人,應該如何建立數據分析思維呢?

  建立你的指標體系

   在我們談論指標之前,先將時間倒推幾十年,現代管理學之父彼得·德魯克說過一句很經典的話:

  如果你不能衡量它,那么你就不能有效增長它。

   所謂衡量,就是需要統一標準來定義和評價業務。這個標準就是指標。假設隔壁老王開了一家水果鋪子,你問他每天生意怎么樣,他可以回答賣的不錯,很好,最近不景氣。這些都是很虛的詞,因為他認為賣的不錯也許是賣了50個,而你認為的賣的不錯,是賣了100。

   這就是“我覺得”造成的認知陷阱。將案例放到公司時,會遇到更多的問題:若有一位運營和你說,產品表現不錯,因為每天都有很多人評價和稱贊,還給你看了幾個截圖。而另外一位運營說,產品有些問題,推的活動商品賣的不好,你應該相信誰呢?

  其實誰都很難相信,這些眾口異詞的判斷都是因為缺乏數據分析思維造成的。

   老王想要描述生意,他應該使用銷量,這就是他的指標,互聯網想要描述產品,也應該使用活躍率、使用率、轉化率等指標。

  如果你不能用指標描述業務,那么你就不能有效增長它。

   了解和使用指標是數據分析思維的第一步,接下來你需要建立指標體系,孤立的指標發揮不出數據的價值。和分析思維一樣,指標也能結構化,也應該用結構化。

   我們看一下互聯網的產品,一個用戶從開始使用到離開,都會經歷這些環節步驟。電商APP還是內容平臺,都是雷同的。想一想,你會需要用到哪些指標?

  

 

   而下面這張圖,解釋了什么是指標化,這就是有無數據分析思維的差異,也是典型的數據化運營,有空可以再深入講這塊。

  

 

   指標體系沒有放之四海而皆準的模板,不同業務形態有不同的指標體系。移動APP和網站不一樣,SaaS和電子商務不一樣,低頻消費和高頻消費不一樣。好比一款婚慶相關的APP,不需要考慮復購率指標;互聯網金融,必須要風控指標;電子商務,賣家和買家的指標各不一樣。

  這些需要不同行業經驗和業務知識去學習掌握,那有沒有通用的技巧和注意事項呢?

  好指標與壞指標

   不是所有的指標都是好的。這是初出茅廬者常犯的錯誤。我們繼續回到老王的水果鋪子,來思考一下,銷量這個指標究竟是不是好的?

   最近物價上漲,老王順應調高了水果價格,又不敢漲的提高,雖然水果銷量沒有大變化,但老王發現一個月下來沒賺多少,私房錢都不夠存。

   老王這個月的各類水果銷量有2000,但最后還是虧本了,仔細研究后發現,雖然銷量高,但是水果庫存也高,每個月都有幾百單位的水果滯銷最后過期虧本。

   這兩個例子都能說明只看銷量是一件多不靠譜的事情。銷量是一個衡量指標,但不是好指標。老王這種個體經營戶,應該以水果鋪子的利潤為核心要素。

   好指標應該是核心驅動指標。雖然指標很重要,但是有些指標需要更重要。就像銷量和利潤,用戶數和活躍用戶數,后者都比前者重要。

  核心指標不只是寫在周報的數字,而是整個運營團隊、產品團隊乃至研發團隊都統一努力的目標。

   核心驅動指標和公司發展關聯,是公司在一個階段內的重點方向。記住是一個階段,不同時期的核心驅動指標不一樣。不同業務的核心驅動指標也不一樣。

   互聯網公司常見的核心指標是用戶數和活躍率,用戶數代表市場的體量和占有,活躍率代表產品的健康度,但這是發展階段的核心指標。在產品1.0期間,我們應把注意力放到打磨產品上,在大推廣前提高產品質量,這時留存率是一個核心指標。而在有一定用戶基數的產品后期,商業化比活躍重要,我們會關注錢相關的指標,比如廣告點擊率、利潤率等。

   核心驅動指標一般是公司整體的目標,若從個人的崗位職責看,也可以找到自己的核心指標。比如內容運營可以關注閱讀數和閱讀時長。

   核心驅動指標一定能給公司和個人帶來最大優勢和利益,記得二八法則么?20%的指標一定能帶來80%的效果,這20%的指標就是核心。

  另外一方面,好的指標還有一個特性,它應該是比率或者比例。

   拿活躍用戶數說明就懂了,我們活躍用戶有10萬,這能說明什么呢?這說明不了什么。如果產品本身有千萬級別的注冊用戶,那么10萬用戶說明非常不健康,產品在衰退期。如果產品只擁有四五十萬用戶,那么說明產品的粘性很高。

   正因為單純的活躍用戶數沒有多大意義,所以運營和產品會更關注活躍率。這個指標就是一個比率,將活躍用戶數除以總用戶數所得。所以在設立指標時,我們都盡量想它能不能是比率。

  壞指標有哪些呢?

  其一是虛榮指標,它沒有任何的實際意義。

   產品在應用商店有幾十萬的曝光量,有意義嗎?沒有,我需要的是實際下載。下載了意義大嗎?也不大,我希望用戶注冊成功。曝光量和下載量都是虛榮指標,只是虛榮程度不一樣。

   新媒體都追求微信公眾號閱讀數,如果靠閱讀數做廣告,那么閱讀數有意義,如果靠圖文賣商品,那么更應該關注轉化率和商品銷量,畢竟一個夸張的標題就能帶來很高的閱讀量,此時的閱讀量是虛榮指標。可惜很多老板還是孜孜不倦的追求10W+,哪怕刷量。

   虛榮指標是沒有意義的指標,往往它會很好看,能夠粉飾運營和產品的工作績效,但我們要避免使用。

  第二個壞指標是后驗性指標,它往往只能反應已經發生的事情。

   比如我有一個流失用戶的定義:三個月沒有打開APP就算做流失。那么運營每天統計的流失用戶數,都是很久沒有打開過的,以時效性看,已經發生很久了,也很難通過措施挽回。我知道曾經因為某個不好的運營手段傷害了用戶,可是還有用嗎?

   活動運營的ROI(投資回報率)也是后驗性指標,一個活動付出成本后才能知道其收益。可是成本已經支出,活動的好與壞也注定了。活動周期長,還能有調整余地。活動短期的話,這指標只能用作復盤,但不能驅動業務。

  第三個壞指標是復雜性指標,它將數據分析陷于一堆指標造成的陷阱中。

   指標能細分和拆解,比如活躍率可以細分成日活躍率、周活躍率、月活躍率、老用戶活躍率等。數據分析應該根據具體的情況選擇指標,如果是天氣類工具,可以選擇日活躍率,如果是社交APP,可以選擇周活躍率,更低頻的產品則是月活躍率。

   每個產品都有適合它的幾個指標,不要一股腦的裝一堆指標上去,當你準備了二三十個指標用于分析,會發現無從下手。

  指標結構

  既然指標太多太復雜不好,那么應該如何正確的選擇指標呢?

   和分析思維的金字塔結構一樣,指標也有固有結構,呈現樹狀。指標結構的構建核心是以業務流程為思路,以結構為導向。

  假設你是內容運營,需要對現有的業務做一個分析,提高內容相關數據,你會怎么做呢?

  我們把金字塔思維轉換一下,就成了數據分析方法了。

   從內容運營的流程開始,它是:內容收集—內容編輯發布—用戶瀏覽—用戶點擊—用戶閱讀—用戶評論或轉發—繼續下一篇瀏覽。

   這是一個標準的流程,每個流程都有指標可以建立。內容收集可以建立熱點指數,看哪一篇內容比較火。用戶瀏覽用戶點擊則是標準的PV和UV統計,用戶閱讀是閱讀時長。

  

 

  從流程的角度搭建指標框架,可以全面的囊括用戶相關數據,無有遺漏。

   這套框架列舉的指標,依舊要遵循指標原則:需要有核心驅動指標。移除虛榮指標,適當的進行刪減,不要為添加指標而添加指標。

  維度分析法

   當你有了指標,可以著手進行分析,數據分析大體可以分三類,第一類是利用維度分析數據,第二類是使用統計學知識如數據分布假設檢驗,最后一類是使用機器學習。我們先了解一下維度分析法。

   維度是描述對象的參數,在具體分析中,我們可以把它認為是分析事物的角度。銷量是一種角度、活躍率是一種角度,時間也是一種角度,所以它們都能算維度。

   當我們有了維度后,就能夠通過不同的維度組合,形成數據模型。數據模型不是一個高深的概念,它就是一個數據立方體。

  

 

   上圖就是三個維度組成的數據模型/數據立方體。分別是產品類型、時間、地區。我們既能獲得電子產品在上海地區的2010二季度的銷量,也能知道書籍在江蘇地區的2010一季度銷量。

   數據模型將復雜的數據以結構化的形式有序的組織起來。我們之前談到的指標,都可以作為維度使用。下面是范例:

   將用戶類型、活躍度、時間三個維度組合,觀察不同用戶群體在產品上的使用情況,是否A群體使用的時長更明顯?

  將商品類型、訂單金額、地區三個維度組合,觀察不同地區的不同商品是否存在銷量差異?

   數據模型可以從不同的角度和層面來觀察數據,這樣提高了分析的靈活性,滿足不同的分析需求、這個過程叫做OLAP(聯機分析處理)。當然它涉及到更復雜的數據建模和數據倉庫等,我們不用詳細知道。

  數據模型還有幾種常見的技巧、叫做鉆取、上卷、切片。

   選取就是將維度繼續細分。比如浙江省細分成杭州市、溫州市、寧波市等,2010年一季度變成1月、2月、3月。上卷則是鉆取的相反概念,將維度聚合,比如浙江、上海、江蘇聚合成浙江滬維度。切片是選中特定的維度,比如只選上海維度、或者只選2010年一季度維度。因為數據立方體是多維的,但我們觀察和比較數據只能在二維、即表格中進行。

  

 

   上圖的樹狀結構代表鉆取(source和time的細分),然后通過對Route的air切片獲得具體數據。

   聰明的你可能已經想到,我們常用的數據透視表就是一種維度分析,將需要分析的維度放到行列組合進行求和、計數、平均值等計算。放一張曾經用到的案例圖片:用城市維度和工作年限維度,計算平均工資。

  

 

  除了Excel、BI、R、Python都能用維度分析法。BI是相對最簡便的。

   談到維度法,想要強調的是分析的核心思維之一:對比,不同維度的對比,這大概是對新人快速提高的最佳捷徑之一。比如過去和現在的時間趨勢對比,比如不同地區維度的對比,比如產品類型的區別對比,比如不同用戶的群體對比。單一的數據沒有分析意義,只有多個數據組合才能發揮出數據的最大價值。

   我想要分析公司的利潤,利潤 = 銷售額 - 成本。那么找出銷售額涉及的指標/維度,比如產品類型、地區、用戶群體等,通過不斷的組合和拆解,找出有問題或者表現良好的原因。成本也是同理。

   這就是正確的數據分析思維。總結一下吧:我們通過業務建立和篩選出指標,將指標作為維度,利用維度進行分析。

  很多人會問,指標和維度有什么區別?

   維度是說明和觀察事物的角度,指標是衡量數據的標準。維度是一個更大的范圍,不只是數據,比如時間維度和城市維度,我們就無法用指標表示,而指標(留存率、跳出率、瀏覽時間等)卻可以成為維度。通俗理解:維度>指標。

   到這里,大家已經有一個數據分析的思維框架了。之所以是框架,因為還缺少具體的技巧,比如如何驗證某一個維度是影響數據的關鍵,比如如何用機器學習提高業務,這些涉及到數據和統計學知識,以后再講解。

   這里我想強調,數據分析并不是一個結果,只是過程。還記得“如果你不能衡量它,那么你就不能有效增長它”這句話嗎?數據分析的最終目的就是增長業務。如果數據分析需要績效指標,一定不會是分析的對錯,而是最終數據提升的結果。

   數據分析是需要反饋的,當我分析出某項要素左右業務結果,那么就去驗證它。告訴運營和產品人員,看看改進后的數據怎么樣,一切以結果為準。如果結果并沒有改善,那么就應該反思分析過程了。

   這也是數據分析的要素,結果作導向。分析若只是當一份報告呈現上去,后續沒有任何跟進、改進的措施,那么數據分析等與零。

  業務指導數據,數據驅動業務。這才是不二法門。

分享到:0  時間:2017-02-10 來源:靈核網整理(011088.cn) 

版權聲明

  靈核網所有報告統計版權為《北京靈動核心信息咨詢有限責任公司》獨家所有,靈核網產品是《北京靈動核心信息中心有限責任公司》對市場調研、研究與整合的成果,究報告產品擁有唯一著作權。靈核網研究報告沒有通過任何第三方進行代理銷售,購買請直接與我公司客服聯系。   靈核網核心產品為有償提...[詳細]
關于靈核網 | 人才招聘| 免責聲明 | 服務條款 | 付款方式 | 聯系我們 | 意見反饋| 版權聲明 | 網站地圖
運營公司:北京靈動核心信息咨詢有限責任公司 中國專業市場調查研究機構-提供各行業市場分析報告
辦公地址:北京市海淀區翠微中里14號樓    北京市大興區天華大街5號院綠地啟航國際12號樓
400熱線:400-998-1068(7*24小時)      傳真:010-82894622轉608      E-mail:lhwscb@011088.cn      QQ:1342340450/1602788672
總部:010-82894622      市場部:010-56290519     
京公網安備11010802011377號 靈核網 版權所有 靈核網數據研究中心